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I. INTRODUCTION 

A. 

of chemical information at cryogenic temperatures, par t icu lar ly  on systems that 

astronomers and astrophysicists feel  a re  important i n  comets and i n  the  atmo- 

spheric and surface chemistry of t he  planets. 

resolves i tself  in to  studies of low molecular weight compounds of t he  four 

reactive elements of maximum cosmic abundance, namely hydrogen, carbon, nitrogen 

and oxygen. 

Space Chemistry. - This research program i s  concerned with t h e  development 

This objective rather  quickly 

The approach here i s  not one of f r ee  radical  s tab i l iza t ion ,  i .e.,  centered 

upon attempts t o  i so l a t e  l a b i l e  species i n  ine r t  matrices at very low tempera- 

tures  which would otherwise be chemically l o s t  w i t h  zero activation energy. 

The concentrations of such species are  l imited t o  a maximum of a f e w  tenths of 

a per cent (usually much l e s s ) ,  and hence, the  importance of such systems i n  

cosmic chemistry would seem t o  be minimal. 

when combined with i r  o r  epr, does, of course, provide a powerful means t o  

study the  physical and chemical properties o f  f r ee  radicals .  

The matrix technique, par t icu lar ly  

By contrast ,  low molecular weight species which have s inglet  electronic 

ground states, i .e. ,  species t h a t  are  highly react ive but a re  not f r ee  radicals ,  

are i n  an altogether different  category. Examples of such substances are 

cyclobutadiene, cyclopropanone, oxirene, diimide, amnonium ozonide, benzyne, 

tetrahedran, and many others.  One would expect such species t o  exhibit  an 

activation energy f o r  reaction, but we would also expect t h i s  energy t o  be 

unusually s m a l l .  If an activation energy ex is t s ,  then substances such as 

these may be preparable as stable cryochemical reagents and a true chemistry 

at very low temperatures may be developed. 

involved i n  these systems are s m a l l ,  it w i l l  usually be necessary t o  maintain 

the  compounds below some c r i t i c a l  temperature i f  they are t o  be manipulated 

as stable,  pure reagents. Hence, all of the  comon operations of chemistry 

must be adapted t o  cryogenic temperatures. 

investigation i s  analysis.  

of unique cryogenically cooled reactor-inlet  attachments t o  the  time-of-flight 

mass spectrometer have been described i n  detail. The cryogenic mass spectrometer 

Since the  activation energies 

A cent ra l  operation i n  any chemical 

I n  e a r l i e r  reports on t h i s  grant, t he  development 
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continues t o  be the  key ana ly t ica l  t o o l  i n  the approach t o  low temperature 

chemistry tha t  i s  being pursued i n  t h i s  laboratory with three la rge  mass 

spectrometers presently i n  use i n  various aspects of t h i s  NASA research 

program. 

The best  characterization of those strange nomads of space, the  comets, 

1 
i s  the so-called "d i r ty  snowball" model of Whipple as modified by Donn and 

Urey. 

of simple compounds such as NH 3, H202, C2H2, e tc . ,  and some meteoric dust. 

However, it has been necessary t o  postula$e highly energetic reactions 

occurring a t  very low temperatures i n  order to explain cometary phenomena 

observed by astronomers. It i s  possible, i f  not highly probable, t ha t  these 

reactions involve as yet unknown species which a re  s tab le  when cold but which 

Here the  comet's nucleus i s  considered t o  be composed of frozen ices  

react vigorously upon s l igh t  warming. The search f o r  the existence of such 

species and the  study o f  t h e i r  chemistry and energetics continues t o  be the  

primary objective of t h i s  NASA program. 

atmosphere and surfaces of the Jovian planets are  very cold (even Mars is  much 

colder than ear th) ,  and hence, the equivalents of earthbound meteorology, 

geochemistry, and possibly other areas of geophysics i n  which chemistry i s  

important, must be understood, as it applies t o  t h a t  par t icu lar  planet, i n  
terms of low temperature chemistry. 

phenomenological chemical behavior of  species l i k e l y  to be present w i l l  also 

be valuable inputs t o  the  engineering designs of landing vehicles fo r  both 

manned and unmanned explorations of the future .  

One should also r e c a l l  t h a t  the 

A build-up o f  general knowledge i n  the 

B. 

eager i n t e re s t  on the par t  of segments o f  the  chemical process industry i n  

many of these same s o r t s  of reactions.  These people are in te res ted  i n  energy 

storage and conversion and i n  chemical synthesis. O u r  way of l i f e  depends 

upon the inexpensive ava i l ab i l i t y  of a wide var ie ty  of chemicals i n  tonnage 

quant i t ies ,  and any process o r  technique which of fers  hope of economy o r  

var ie ty  i n  these syntheses i s  sure t o  a t t r a c t  a t tent ion.  The low temperature 

procedures developed here represent a t o t a l l y  new dimension of preparative 

chemistry, and, since indus t r i a l  chemistry i s  preparative chemistry, they also 

represent new dimensions (however embryonic) of i ndus t r i a l  chemistry. 

Indus t r ia l  Chemistry. - A s  t h i s  work has developed, we have found ra ther  

- 
We a re  
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working hard toward expanding our long-time and fruitful dialogue with segments 

of the  chemical process industry in to  activities of a concrete collaborative 

nature. 

The existence of very substant ia l  indus t r ia l  i n t e re s t  i n  t he  research 

and teaching programs of t h i s  laboratory is, we think significant,  and i s  worth 

bringing t o  t he  at tent ion of NASA. 

are completely intermeshed and are of equal importance. 

backgrounds of formal t ra in ing  i n  - both engineering and i n  chemistry. 

t hes i s  research i n  cryochemistry and kine$ics seems t o  s t re tch  t h e  student i n  

Research and teaching i n  t h i s  laboratory 

Students get strong 

Their 

both the  areas of engineering concern and i n  the  more sc i en t i f i c  concerns i n  

t h a t  each involves complex problems i n  experimental design; each has def in i te  

and s ignif icant  implications as regards generalization t o  l a rge  scale  operation, 

and each has f i r s t - r a t e  s c i en t i f i c  merit.  

but a lso the  general chemical process industry manifests i t s  in t e re s t  i n  such 

students by t h e i r  posit ion and salary of fe rs  which are i n  the  national upper 

10 per cent fo r  a l l  new Ph.D.'s i n  science and engineering. 

Not only the  "space-defense" industry, 

A s  a uni t  of a technological I n s t i t u t e  which i s  beginning t o  rea l ize  i t s  
potent ia l  f o r  greater contributions t o  the  economy and well-being of the  en t i re  

South, we are v i t a l l y  interested i n  both the  development o f  technology and i n  

the  u t i l i za t ion  of t ha t  technology. 

appear t ha t  t h i s  NASA program can function very well  i n  both of these regards. 

Judging by past  performance, it would 

11. RESEARCH 

A major par t  of t h i s  NASA program i n  space chemistry i s  the  synthesis, 

energetics, and chemical characterization o f  low molecular weight, highly 

reactive compounds of C, H, N and 0. 

diene (I), cyclopropanone (11) , cyclopropenone (111) , and cyclopropene (IT). 
Progress has occurred with cyclobuta- 

I I1 
AY A 
I11 rv 
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Compounds I, 11, and I11 are cent ra l  issues i n  the theory and practice of 

organic chemistry. They have been postulated as reaction intermediates, and 

t h e i r  direct  observation has been vigorously sought by numerous investigators 

for  many years, but with l i t t l e  o r  no success. 

The new techniques of cryochemistry are applicable t o  the  i so la t ion  and 

characterization of such compounds. 

A. Cyclobutadiene. - Cyclobutadiene i s  a highly s t ra ined cycl ic  dimer of 

acetylene 

experiment which w a s  based on kinet ic  masb  spectrometry i n  f l a sh  photolyzed 

cyclobutadieneirontarbonyl ( C I T )  . 
potent ia l ,  and the  indef in i te  f r ee  existence o f  condensed cyclobutadiene at 

very low temperatures from the  pyrolysis and rapid cryo-quench of CIT. 

new data, though compelling, a re  however, s t i l l  not completely def ini t ive,  but 

it seems c lear  t ha t  any absolute ident i f icat ion and characterization of cyclo- 

butadiene w i l l  demand the  techniques of cryochemistry. We may a l so  reasonably 

expect t he  preparation of cyclobutadiene as a neat cryochemical reagent provided 

only tha t  the  act ivat ion energies f o r  i t s  very f a c i l e  diene reactions, although 

very s m a l l ,  are nonetheless f i n i t e .  

2 
t ha t  has been direct ly ,  but not def ini t ively,  observed i n  only one 

W e  now report t he  mass spectrum, ionization 

These 

The apparatus consis ts  o f  a pyrolysis furnace mounted inside a cryogenically 
4 cooled i n l e t  system attached t o  a Bendix time-of-flight mass spectrometer. The 

furnace w a s  constructed of a 5 mm OD Pyrex tube wound with Nichrome wire pro- . 

viding a heated length of 3.5 em. The furnace w a s  mounted coaxially inside an 

11 mm I D  monel quenching tube which was kept at -196' and 10 

the  pyrolysis w a s  conducted at l o w  pressures and short contact times, and the  

products must t r ave l  only a f e w  mm from the  furnace exhaust port before being 

quenched. 

Each pyrolysis run l a s t ed  2 hours with i n l e t  pressures of C I T  of 10 

10-1 t o r r  ( indicated at a distance of 93 cm from the  furnace) and with furnace 

temperatures at 320' t o  380 . 
vaporized and t rave l led  less than 8 ern w i t h  no associated warming before 

controlled energy electron bombardment i n  the  source. 

of pyrolysis are shown i n  Table 1, and each species w a s  also observed i n  the  

-6 torr. Thus, 

-2 t o  

0 Upon controlled warm-up, the  quenched products 

The pr inciple  products 
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Table 1. Pyrolysis Products and Appearance Temperatures 

Compound 

co 

c2H2 

c02 

c4H4 

c4H6 

'SH6 

'8% 

Temperature (OC) 

-196 

Relative 
Quantity 

la rge  

-155 medium 

-145 s m a l l  

-120 s m a l l  

-105 la rge  

-90 la rge  

-80 medium 

+ 
e a r l i e r  f l a sh  photolysis of CIT.3 A t  -105O, a large peak a t  m/e 52, C4H4 , 
and a small peak a t  m/e 54, C4H6 , were observed. 

fo r  6 hours f a i l e d t o  completely remove C H 

1,3 butadiene and the mass spectrum of C4H4 reported here (see Table 2) was 

obtained by subtracting the mass spectrum of l , 3  butadiene from the  observed 

t o t a l  mass spectrum at -105 . 

+ 0 
Continuous pumping at -110 

The C H was ident i f ied  as 4 6' 4 6  

0 

The isomers of cyclobutadiene, butatriene and vinylacetylene, have been 

prepared and each exhibited both a d i f fe ren t  mass spectrometric pat tern and a 

d i f fe ren t  ionization potent ia l  as  shown i n  Tables 2 and 3. To avoid possible 

misinterpretation from temperature e f f ec t s ,  the ionization potent ia ls  of cyclo- 

butadiene, vinylacetylene, and butatriene were determined at -100 , -108' , and 

-90 , respectively. 

semi-empirical SCF treatment recently developed by Dewar and Klopman. 

experimental and theore t ica l  r e su l t s  are  summarized i n  Table 3. 

0 

0 These ionization potent ia ls  were also calculated using a 

The 
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Table 2. TOP Mass Spectra of C4H4 Isomers at 70 eV 

m/e 
52 
51. 
50 

49 
48 
39 
26 

C4H4 from Pyrolysis 
of CIT  

100% 

59 
51 
17 
1 

5 
26 

But at r iene Vinylac e tylene 

100% (100%)" 100% 

70 (72-80) 56 (50.2) 

51 (54) 49 (41) 
26 (24) 19 (13) 

1 (-4 1 (0.85) 
18 (21.2) 12 (11.0) 

8 (-4 8 (2.8) 

( a )  Measured with a magnetic mass spectrometer (CEC, model 21-103), W. M. 
Schubert, T .  H. Libbicoet and W. A. Lanka, J. Am. Chem. SOC. 76, 1929 
(1954). Additional peak at m/e 53 of 14.7-22.2 per cent ev idGt ly  
a r i s e s  from reaction-during i'klet . 

(b) Measured with a magnetic mass spectrometer (CEC, model 21-101), Selected 
Mass Spectral Data, API  Research Project 44. 

Table 3. Experimental and Theoretical Ionization 
Potent ia ls  f o r  C4H4 Isomers 

Isomer 

Cyclobut adiene 

Vinylacetylene 

Bu t  at r i ene 

Experiment 

9.55 
9.9 (9.Sb> 
9.25 

Theory" 

8.9 

8.99 
9.42 

(a) Calculated using a semi-empirical SCF MO treatment developed by M.J.S. 
Dewar and G. Klopman, J. Am. Chem. SOC. - 89, 3089 (1967) 

I?. H. Fie ld  and J. L.  Franklin, "Electron Impact Phenomena," Academic 
Press, New York, N. Y., 1957, p. 261. 

(b) 
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The ionization potent ia ls  at m/e 52, 78 and 104, presumably C H C H 4 4’ 6 6’ 
and c8%, respectively,  were determined from the low temperature evolved gases 

by the l i n e a r  extrapolation method using ionization eff ic iency curves recorded 

d i r ec t ly  from the  electrometer using a Hewlett-Packard (Model 700/AR) X-Y 

p lo t t e r .  

octatetraene i s  8.6 eV, the  I(C8%) observed here i s  postulated as cyclo- 

butadiene dimer. The mass spectrum and ionization poten t ia l  at m/e 78, c6H6y 
are i n  agreement with t h a t  of benzene. 

pyrolysis can occur by the  reaction of cyclobutadiene and acetylene o r  by the 

polymerization of acetylene a t  these pyrolysis temperatures (320 

Benzene was i n  f a c t  observed upon passing pure acetylene through the  furnace 

at 3 8 0 O . ~  
and then benzene i t s e l f  has been suggested by P e t t i t .  

The observed I P  of c8% w a s  9.1 eV, and since the  value f o r  cyclo- 
6 

The formation of benzene i n  the 

P 0 0 t o  380 ). 

The reaction of cyclobutadiene and acetylene t o  form Dewar benzene 
8 

From these comparisons o f  the  mass spectra and ionization potent ia ls  of 

the  C H species, and from the formation of benzene and cyclobutadiene dimer, 

we conclude t h a t  cyclobutadiene was produced from the pyrolysis of CIT  and 

quenched as  a compound which i s  s tab le  and probably isolable  below about -90 . 
We f e e l  tha t  th i s  const i tutes  the  most def in i t ive  study of t h i s  long-sought 

molecule t h a t  has appeared. 

B. Three Carbon Strained Ring Compounds. - A s  discussed i n  previous reports,  

a major e f fo r t  of our work has been t o  apply the techniques of cryochemistry 

t o  the synthesis and study of  a family of small, 3-carbon s t ra ined r ing 

compounds: cyclopropene, cyclopropanone, and cyclopropenone. These compounds, 

because of t h e i r  s t ra ined s t ructure ,  are  all highly react ive,  and they exhibit  

only a f l ee t ing  existence at room temperature while functionally serving as  

reaction intermediates. 

stored indef in i te ly  a t  low temperatures. We have synthesized these compounds 

and studied t h e i r  molecular energetics by the use of cryogenic i n l e t  systems 

adapted t o  a mass spectrometer. 

appearance potent ia ls  of the compounds and fragments, we wanted t o  calculate  

heats of atomization, bond dissociation energies and r ing s t r a i n  fo r  comparison 

with similar quant i t ies  obtained from theore t ica l  calculations.  

4 4  
0 

We have now shown tha t  they can be i so la ted  and 

4 From the  measurement of ionization and 
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Energetic data from the measurement of appearance potent ia ls  of fragment 

ions are based on the  following type reaction: 

and equation: 

+ * 
2. A . P . ( R ~  =  AH^ = AH",R~+) + AH'(R f 2  - ~ O ( R  f 1  - R ~ )  + E 

R2 
- group of atoms bonded t o  another group, R1 where : 

A.P. - mass spectrometrically measured appearance 
potent i a l  

- heat of formation 

- excess energy of any fragment (includes E* 
t rans la t iona l ,  vibrat ional  and rotat ional)  

D(R1 - R2) - bond dissociation energy. 

In  the  case of r ing compounds, fragmentation requires tha t  two bonds be broken, 

and we wanted t o  study and in te rpre t  t h i s  ra ther  more complex phenomenon, i .e. ,  

I- 
3. /"; +e -, )Q c1-c3 + c2 + 2e 

3 c2 c3 c2- C 

The preliminary interpretat ion o f  t he  data from the f irst  compound investi-  

gated, cyclopropanone, proved t o  be inconclusive, and hence, a c r i t i c a l  e r ror  

analysis of expressions l i k e  Equation 2 had t o  be undertaken with compounds 

previously studied and interpreted by other workers i n  the  mass spectrometric 

f ie ld .  Possible sources of e r rors  t o  be investigated were: 
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accuracy of A.P. 

choice of fragmentation process and products 

AHo of fragment, usually a number from the  thermochemical 

l i t e r a t u r e  

ionization and appearance potent ia l  values f o r  both ground 
s t a t e s  and excited states 

excess energy o f  fragments ( t rans la t iona l  and vibrat ional)  

f 

Excess energies o f  the  fragment ions were studied by the  method of 

Franklin.' 

with a thermal d is t r ibu t ion  of ve loc i t ies  w i l l  exhibit  a mass spectrometric 

peak shape which r e f l ec t s  the  one-dimensional spread i n  ve loc i t ies  

b f  the  fragment ion a f t e r  ionization. 

proportional t o  the  square root of ion mass and temperature. 

from the  standard width at  room temperature i s  re la ted  t o  a change i n  ion 

temperature from which one can calculate  the  t rans la t iona l  energy of the ion  
fragment and the  t rans la t iona l  energy of t he  neutral  fragment. Franklin has 

flnrther shown tha t  t h i s  t o t a l  excess t rans la t iona l  energy i s  a def in i te  

This method i s  based on the  iheory and f ac t  t ha t  fragment ions 

The width of each peak i s  d i r ec t ly  

Any deviation 

f rac t ion  of the t o t a l  ( t ranslat ional ,  rotat ional ,  and vibrational)  excess 

energy. 10 

There i s  some doubt as t o  whether a par t icular  ion observed i n  the  mass 

Since these unusually reactive spectrometer i s  a r ing o r  an open structure.  

cryogenic species presumably polymerize through a f r ee  radical  s t ructure ,  

several  LCAO-MO-SCF computer programs are  being used t o  predict  whether the  

ionization potent ia ls  of these various species d i f f e r  enough energetically t o  

be detected by a mass spectrometric measurement. Also, i n  the  simultaneous 

breaking of two r ing bonds, each fragment would i n i t i a l l y  be produced as an 
excited diradical,  t he  energy of which may be calculable. Presently, only 

the  computer programs limited t o  H and C are working correct lyY5 and data on 

cyclopropene are discussed later.  

molecules should be available soon. 

Additional computations on C, H, and 0 
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(a) Cyclopropane 

Cyclopropane w a s  investigated because it i s  similar t o  our unusual cryo- 

genic molecules and because previous work on i t s  energetics w a s  available. 

Appearance potent ia ls  'of the fragments were measured and processes were chosen 

tha t  came closest  t o  being energet ical ly  consistant as described by Equation 2. 

Later work'' showed t h a t  some of the ions possessed considerable excess energy 

and, then, t ha t  the processes chosen i n  the  previous work were incorrect .  

Cyclopropane exhibited a var ie ty  of shapes of ionizat ion eff ic iency curves 

which could be c l a s s i f i ed  as t o  t h e i r  v+ue i n  energetic deductions. 

11 

Ionization poten t ia l s  a re  obtained by comparing the  unknown ionization 

eff ic iency curves t o  those of known standards. 

usually f a l l  d i s t i n c t l y  in to  one of two classes:  

i n  shape with the  standard, o r  (2)  they possess a much longer i n i t i a l  curved 

ta i l .  
curves can be used with good r e su l t s .  The second type of curve i s  caused by 

more than one process contributing t o  the formation of the  ion, and the 

overal l  resu l t ing  curve i s  the arithmetic sums of these individual processes. 

For a many-process ionization, the overa l l  curve w i l l  have a long, shallow 

curve. 

be used t o  deduce energetic quant i t ies .  But, i f  the  overal l  curve a r i s e s  

from only a few processes, it may have a long, but steep, curved t a i l .  This 

case can be handled by the  method of i n i t i a l  breaks. 

The shapes of unknown fragments 

(1) they are  nearly ident ica l  

For the f i r s t  type, any method of comparing the  unknown and ca l ibra t ing  

This type o f  curve i s  impossible t o  compare t o  a standard and cannot 

With accurate appearance potent ia ls  and excess energies i n  hand, the  

AH of cyclopropane was calculable from data on three ions, and it was  shown 

tha t  the products were not present as diradicals ,  but i n  t h e i r  ground s t a t e s .  

This molecule, then, provided a foundation t o  discuss the  energetics o f  other 

cycl ic  compounds. 

f 

(b) Cyclopropene 

Cyclopropene slowly polymerizes at dry i ce  temperature (-78'). we 

synthesized t h i s  molecule by the  reaction of a l l y l  chloride with sodium amide, 

under conditions where the  unstable cyclopropene could readi ly  escape from 

the reaction mixture and be immediately trapped at  770K.12 
was pur i f ied  by simple t r a p  t o  t r a p  d i s t i l l a t i o n .  

The f i n a l  product 

This molecule was  
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investigated using both the  low temperature i n l e t  system (wherein the  molecule 

w a s  kept a t  -140 un t i l  analyzed) and at room temperature. 

appearance potent ia ls  measured at both temperatures appeared t o  be equivalent. 

This indicated tha t  i f  the  r ing opened o r  a diradical  formed upon warming, 

t ha t  it did so i n  only such s m a l l  quantit ies t ha t  the  product w a s  energetically 

undetectable. A l l  fragment ions were formed with l i t t l e  or no excess energies. 

But no fragments had a sa t i s f ac to r i ly  shaped curve t o  measure the appearance 

potent ia l  accurately. This i s  shown i n  Table 4 where a l l  calculated AHf f o r  

0 
Mass spectra and 

Table 4. Mass Spectrometric Data on Cyclopropane and Cyclopropene 

Fragment I.P. (e.v.) o r  A.P. Excess Energy AH? a Curve 
Kcal.jMole. Shape 

I_ L i t .  This Work - 
- Exp. Theory - Exp. - - - 

This Work L i t .  Kcal ./Mole. m/e 

This Work L i t .  Exp. Theory Exp. This Work -- 
42 (Parent) 

27 
26 
15 

14 

40 (Parent) 

39 
27 

26 

15 
14 

10.3 
13.7 
14.0 

16.0 

18.5 

9.8 
11.0 

13.5 

16.4 

16.0 
15 .o 

10.2 

13.5 30 
13.6 1 5  
16.9 15 

18.8 90 

9.7 9.9 
11.1 

0 

0 

0 

1.5 

1 13 
5 
21 

-40 

120 15 

100 

-10 

0 

77 

41 67 

Good 

Long Ta i l  

Long T a i l  

Long Tai l  
Shallow 

Long T a i l  

Good 

Long Tai l  
Shallow 

Long T a i l  
Shallow 

(a) AHo of  parent as calculated from experimental A.P. of  fragment ion using Equation 2. f 
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cyclopropene a re  i n  considerable error .  Note the good r e su l t s  f o r  the  I.P. 
of cyclopropene as calculated by the  previously discussed computer program. 

s t a t ed  at constant temperatures, then quenched t o  77'K, and then warmed t o  

determine whether the molecule had been destroyed and whether there  were any 

gaseous decomposition products. The soak-temperatures ranged from -140 t o  

room temperature and the  product was stored under vacuum. 

decomposition products, but a polymer which w a s  noticeably formed only a t  

To t e s t  the  temperature s t a b i l i t y  of the  molecule, samples were thermo- 

0 

We found no 

about room temperature. 

completely destroy cyclopropene as analysis showed both the  molecule and a 

high molecular weight compound (m/e 80) which appeared to be the dimer. 

the compound appears to be much more s tab le  than anticipated from other work. 

The polymer appeared t o  be a white waxy so l id  which smears upon contact a t  

room temperature. 

and showed no decomposition accompanied by off-gas evolution. The polymer 

was soluble i n  benzene, s l i gh t ly  soluble i n  gasoline, and insoluble i n  

water, acetone, and methanol. 

I n  f a c t ,  a one-week room temperature exposure did not 
& 

Thus, 

0 
The polymer was heated t o  near 300 , but it remained s tab le  

(c ) Cyclopropanone 

Cyclopropanone i s  a s m a l l  r ing compound t h a t  has been often proposed as  

a reaction intermediate, and at the  time t h i s  work w a s  begun, the species had 

never been isolated.  We used a d i rec t  approach t o  i t s  synthesis using the  

reaction of diazomethane with ketene. 

4. C%N2 + CH2C0 4 ~y - CH2CH2C0 + N2 t 

Room temperature synthesis attempts have always yielded the butanone which w a s  

viewed as  resu l t ing  from fur ther  reaction of diazomethane with cyclopropanone. 

5. C H g 2  + Cy - CH2CH2C0 4 CY - CH CH CH CO + N2 t - 2 2 2  

Diazomethane and ketene were prepared, purif ied,  and characterized mass 
spectrometrically. 

by arranging, at l i qu id  N2 t&peratures, a condensed r ing of diazomethane 

The reaction w a s  carr ied out i n  a cooled, evacuated t r a p  
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above a so l id  r ing of ketene ( i n  great excess). By then plunging the  t r a p  

in to  a l i qu id  refr igerant  a t  -150°, the so l id  yellow diazomethane became a 

viscous l i qu id  which slowly ran down in to  and reacted with the  now also l i qu id  

ketene producing a white so l id  and a vo la t i l e  gas. 

monitored mass spectrometrically and w a s  ident i f ied  as  N The r a t e  of evolu- 

t i o n  of off-gas was constant with time, supporting the idea of a concentration 

independent, l iquid- l iquid reaction on the wall of the  vessel. 

The product gas was  

2' 

After the  excess reactants (which were proven t o  be en t i r e ly  ketene) were 

removed by warming, the  so l id  was t ransferred t o  the  cryogenic i n l e t  system 

where it was warmed and product peaks at m/e 56 and m/e 70 were studied at  
-90 and -75 , respectively. The re la t ive  v o l a t i l i t i e s  of the two compounds 

allowed then t o  be separated suf f ic ien t ly  t o  obtain t h e i r  mass spectra and 

energetic values. The vapor pressure, mass spectra,  and energetic values of 

the heavier species were essentially13 the same as those obtained i n  t h i s  

laboratory from a pure sample of cyclobutanone (K & K Laboratories, Inc.) .  

Likewise, the  data f o r  the l i gh te r  product were iden t i ca l  t o  tha t  reported 

f o r  cyclopropanone by Shaafsma, -- e t  a l .  

y ie ld  the same ions upon electron bombardment revealing t h e i r  similar s t ructure .  

On the bas i s  of these data, we concluded t h a t  cyclopropanone had been isolated.  

0 0 

14 Both cyclopropanone and cyclobutanone 

We also studied cyclopropanone a t  room temperature, and s imilar  t o  

cyclopropene, obtained the same I.P. f o r  the  parent indicating no major change 

i n  s t ructure  due t o  warming. However, t h i s  proved t o  be a very ine f f i c i en t  - 

operation as most of the  sample (greater than 95%) w a s  polymerized, and the  

sample barely l a s t ed  long enough for the  study. 

We have studied the  temperature s t a b i l i t y  of t h i s  molecule by the same 

techniques as discussed under cyclopropene. This molecule i s  much more 

reactive than cyclopropene. Some polymerization w a s  apparent at -90 , a 

temperature a t  which cyclopropanone exerts l i t t l e  vapor pressure. It i s  
d i f f i c u l t  t o  t e l l  whether the compound i s  a l i qu id  o r  a so l id  at t h i s  tempera- 

tu re .  

condensed as  a sol id ,  it appears t ha t  the  polymerization reaction i s  at l e a s t  

begun,if not completed,as a so l id  o r  l i qu id  before it reaches the vapor phase. 

Although a one-hour room temperature soak completely destroyed the  cyclopro- 

panone, no v o l a t i l e  decomposition products were observed. The polymer w a s  a 

0 

Because of the  loca l iza t ion  of the polymer at the  s i t e  where it w a s  
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white powder which, when heated t o  200°, proved t o  be thermally unstable. 

The first product observed w a s  m/e 56 which w a s  interpreted as trapped cyclo- 

propenone and not as polymer decomposition. 

products were observed. The polymer was  soluble i n  benzene, s l i gh t ly  

soluble i n  gasoline, somewhat soluble i n  acetone and alcohol, and not soluble 

i n  water. The or ig ina l  appearance potent ia ls  are  now being reinvestigated i n  

terms of  what w a s  learned from other cycl ic  compounds. 

calculation of t he  I.P. and AH are  now underway. 

(d) Cyclopropenone 

Then heavier, but unidentified, 

Also, the computer 

f 

Cyclopropenone, 

H 

H 

i s  a highly strained, s m a l l  r ing system tha t  appears t o  possess considerable 

conjugative s tab i l iza t ion .  Studies with the  subst i tuted molecule date from 

1959, and compelling, but not absolutely conclusive, evidence f o r  the  synthesis 

of  the parent ketone has appeared.15 

i n  aqueous solution, but attempts t o  i so l a t e  the  substance, i n  work done by 

different  research groups, whether by removal of the  solvent by d i s t i l l a t i o n ,  

The or ig ina l  synthesis yields the  ketone 

o r  by vapor phase chromatography under a var ie ty  of conditions have f a i l ed .  

Cyclopropenone i s  l o s t  by polymerization ju s t  as i s  t rue  of t he  hydrogenated 

analog, cyc10propanone.l~ 

the  saturated compound, it cannot be kept i n  water solution as  it hydrolyzes 
1-5 t o  form acryl ic  acid.  

Although the  o le f in  appears t o  be more s table  than 

Both o f  these ketones are  interest ing cryochemical systems. The cyclo- 

propenone i s  par t icu lar ly  in te res t ing  i n  view of t he  f a i lu re  of standard 

techniques i n  attempts t o  i so l a t e  the  substance during the  almost two years 

since i t s  i n i t i a l  ident i f ica t ion .  

molecule since then also casts  some doubt on i t s  existence. The cryochemical 

equipment and procedures tha t  have been developed i n  t h i s  laboratory are  being 

applied t o  t he  isolat ion,  energetics, and r eac t iv i ty  questions surrounding 

The lack of published l i t e r a t u r e  on the  
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t h i s  molecule. 

the  past  of many invest igators ,  it may well be t h a t  the  techniques of cryo- 

chemistry may be the only way t o  effect ively study t h i s  molecule. 

I n  view of the  equivocal data, even with the  great  i n t e re s t  i n  

The or ig ina l  apparent synthesis by Breslow and Ryan of cyclopropenone 

consisted o f  the  reaction of tetrachlorocyclopropene with two equivalents of 

t r i -n-buty l t in  hydride at room temperature i n  parafin o i l  t o  produce a vo la t i l e  

mixture of mono-, di-, and tri-chlorocyclopropenes. This mixture of chloronated 

products i s  taken up i n  CC14, then hydrolyzed with cold water t o  give an aqueous 

phase solution of the cyclopropenone. This sequence of reactions i s  as follows: 

II 

2Bu SnH 3 

c12 0 

6 .  

c12 

O u r  first attempt t o  reproduce t h i s  or ig ina l  synthesis was proved 

successful when both the  dichlorocyclopropene and cyclopropenone were ident i -  

f i e d  by nmr analysis.  

pur i ty  was qui te  poor. Later, by u t i l i z a t i o n  of mass spectrometric and 

infrared analysis,  we were able t o  be t t e r  control the  preparations, and we 

obtained improved yields  and much higher puri ty  than i n  the f i rs t  attempt. 

Tetrachlorocyclopropene can be kept indef in i te ly  at room temperature. 
3 

w i l l  react  with a i r  but it can be kept under argon sealed from a i r  at room 

temperature. Dichlorocyclopropene, on the  other hand, i s  i t s e l f  a cryochemical 

which must be kept below -70 A t  room temper- 

ature,  dichlorocyclopropene, within seconds, w i l l  begin t o  turn  from a c lear  

white l i qu id  t o  yellow, and then s teadi ly  darken t o  a deep brown. 

This preparation was done on a small scale and the  

Bu SnH. 

0 
o r  it i s  l o s t  by polymerization. 

The or ig ina l  preparation of cyclopropenone resu l ted  i n  a water solution. 

t o  room tempera- 0 Trying t o  separate t h i s  solution by slowly warming from -196 
t u r e  under vacuum and immediate analysis by the  mass spectrometer proved 

unsuccessful. 

might have hydrolyzed t o  acryl ic  acid as it i s  known t o  do. 

the  solvent water, the solution must be heated t o  a temperature a t  which the 

ketone would rapidly polymerize. 

-20 . A polymer i s  formed during the slow warming but we cannot say de f in i t e ly  

3. 
A dominant peak a t  m/e = 19 ( H  0 ) suggested t h a t  cyclopropenone 3 

Also, t o  vaporize 

Cyclopropenone i s  known t o  polymerize above 
0 
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it i s  from cyclopropenone as it could also be from unreacted dichlorocyclo- 

propene. These data prove water t o  be an undesirable solvent. 

The ketone can also be synthesized i n  ace ton i t r i l e  and perhaps other 

solvents. 

perform the  hydrolysis of the  dichlorocyclopropene and which w i l l ,  i n  turn,  

enable the  product t o  be separated. 

great ly  d i f fe r ing  i n  v o l a t i l i t y .  

pressure i n  a non-volatile solvent, and following t h i s  by vacuum pumping may 

allow the  ketone t o  be evolved as  a f r ee  gas. 

solvent may be evaporated at a low enough temperature t o  leave behind an 

unpolymerized product. 

We are  attempting t o  f ind  a more su i tab le  solvent i n  which t o  

An obvious choice of solvent i s  one 

Performing the  reaction at atmospheric 

Conversely, a very vo la t i l e  
% 

16 According t o  Ryan, the hydrolysis reaction i n  pure dichlorocyclopropene 

r e su l t s  i n  a black polymer, l i be ra t ing  CO gas. But  t h i s  same reaction, slowed 

and controlled by carrying it out a t  cryogenic temperatures, may possibly y ie ld  

the unpolymerized ketone. 

We plan t o  carry out the above described experiments i n  the  next few 

weeks. Results from the  computer calculation of the  most s tab le  s t ructure  for  

cyclopropenone should a l so  be available within the next few weeks. 

111. FUTURE PLAlY'S 

The nature of  our  continued research with the  above ser ies  of s m a l l  

s trained-ring systems has already been described. Several new systems seem 

par t icu lar ly  promising, and hence, some expansion i n  scope w i l l  occur during 

the ensuing year. 

(a) 
ments, we propose t o  continue work toward the  synthesis of t h i s  highly strained, 

unsaturated, heterocycle, 

Oxirene. Although we have been unable t o  perform any def in i t ive  experi- 

/O\ 
HC = CH 

The most promising approach s t i l l  seems t o  be the addition of 'D excited 

0 atoms t o  out l ine  at low temperatures. 
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(b) 
and reactive compounds of Chapter I1 opens the door to exploration of their 
chemistry. For example, 

Cryogenic Reactions of New Molecules. Successful synthesis of the unusual 

7. +CH2*-+ H 

H2 
H H 

H H 

C NH 

H 

H, H 

H H H 
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A l l  of these suggested product molecules are presently UnEYnown and may well  be 

non-existent, even at cryogenic temperatures, i n  view of high s t r a i n  i n  the bonds. 

But these typ ica l  examples of cryochemkal reac t iv i ty ,  as well as many others 

t ha t  could be writ ten,  seem logica l  and in te res t ing  follow-ups t o  our successful 

syntheses of the  required (and previously unavailable) unusual cryochemical 

reagents. 

(c) Ozonides. 

a constituent o f  the  atmospheres o r  surfaces of  the  Jovian planets.  

a highly reactive cryogenic l i qu id  whoseechemical charac te r i s t ics  are  s t i l l  

ra ther  obscure. 

Ozone may well be an important cometary constituent as well as 
It i s  also 

In  e a r l i e r  reports on t h i s  NASA: program, we reported rather  unsuccessful 

.attempts t o  confirm the  much debated synthesis o f  hydrogen superperoxide, H204,  

from the reaction of atomic hydrogen w i t h  l iqu id  0 These experiments 

were plagued by frequent and ill understood explosions. We propose t o  continue 

these studies u t i l i z i n g  our  improved technique and equipment tha t  has been 

developed i n  the  meantime. 

0 
at 77 K. 3 

Ozone i s  believed t o  react with olef ins  t o  form ozonides via the fornation 

of an unstable t rans i tory  adduct cal led molozonide, but such a species has 

never been d i rec t ly  observed. 

8. 
H H  
I 1  4 

Ri--c=C-R2 + O 3  

1 

- 
H H  

R- C- 6-R2 
I I  
0 0  

'O/ 

molozonide 

unstable 

/O\ 
4 RICHO .t R2CH02 3 R1-CH HC-R2 

I I  
0-0 

ozonide 
unstable 

3 propose t o  study the above reaction at very 1 r temper tures rith a number of 

simple unsaturated hydrocarbons ( for  example, ethylene , acetylene, dicyano- 

acetylene, e tc . )  with the objective of i so la t ing  the molozonide ( if  it ex i s t s )  

o r  any other reactive intermediate. With success here, energetic, s t a b i l i t y ,  

and r eac t iv i ty  studies w i l l  be conducted i n  the usual manner. 
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(d) Nitrogen Compounds. A family of N-H compounds may be 

(H N-N=NH) , tr iazane (H~N-NH-NH ) , tetrazene ( H ~ N -  

reports on t h i s  NASA. program, we have shown tha t  t he  

pound, diimide (N2%), may be made from t h e  cryogenic 

oxygen-monia flame. 

from pyrolyzed HN may be a cycl ic  trimer, 

i s  isoelectronic with 0. Finally,  it w a s  a l s o  recently shown i n  low temperature 

matrix experiments t ha t  atomic fluorine w i l l  abstract  hydrogen from HN t o  yield 

the N radical.  

2 2 

One may a l so  postulate t h a t  

or e i the r  ozone-like since NH 3 

3 
3 (r 

We propose t o  study the  reactions o f  NH (from HN ), and N H (from 3 2 3  
hydrazine) and N H 
membered cyclic and acyclic compounds of  th is  family. We also propose t o  study 

the  formation of cycl ic  N6 from the dimerization of  two N 

molecular energetics, the region of thermal s t a b i l i t y  and the  ident i f ica t ion  

of the reaction o r  decomposition products from a l l  o f  these studies will be 

accomplished with the a id  of  t he  cryogenic mass spectrometers i n  the  usual way. 

(from 0 + NH flame) i n  attempts t o  form three and fou r  
2 2  3 

f r ee  radicals.  The 3 

(e) Cyanogen Azide. 

molecule which has recently been synthesized, and it has been the  object of 

several reac t iv i ty  studies .17 Upon pyrolysis, it yields NCN radicals which 

then dimerize t o  form NC-lJ=N-.CN which i s  i t s e l f  an orange-red, highly reactive,  

Cyanogen azide, N CN, i s  an unstable and highly react ive 3 

vo la t i l e  compound. 

We propose t o  make a ser ies  of exploratory studies of  the  chemistry of 

cyanogen azide at very low temperatures w i t h  a view toward the  development of  
information pertinent t o  the or ig in  of CN emission from comets. For example, 

the discovery of  an H-C-N-0 compound i n  which the cyanogen group w a s  only 

weakly bonded (say D(M-CN) < 1 ev) would be a good candidate species for l o w  

in tens i ty  photolysis. 

IV. ADDITIONAL INFORMATION 

A f t e r  careful  arrangements t o  insure efficiency and continuity, NASA. 
approved a proposed leave-of-absence t o  allow the  Principal Investigator t o  

rst nine months of 1969 as a v i s i t i n g  professor i n  the Chemistry 

and Chemical Engineering Division a t  the California I n s t i t u t e  o f  Technology. 
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His salary w i l l  be paid jo in t ly  by Caltech and Georgia Tech, together with a 

very small contribution from t h i s  NASA grant. During t h i s  leave-of-absence, 

t h e  Georgia Tech Foundation has made funds available t o  allow monthly re turn  

visits by D r .  McGee for  consultations with h i s  research students and fo r  t he  

continued supervision of this NASA. research program. 

Caltech w i l l  involve seminars, lectures ,  consultations with Research Fellows, 

e tc .  on matters of t he  same o r  very closely re la ted  areas of research as are 

now underway i n  h i s  laboratory at Georgia Tech. 

e n l i s t  at least one Post-Doctoral Fellowpat Caltech who would begin work at 

Caltech and then move on t o  t h e  Georgia Tech laborator ies  at an appropriate 

t i m e  . 

D r .  McGee's work at 

It should be pQssible t o  

Joint  investigations are a l s o  being developed. Already, an experiment 

with cyclopropanone immersed i n  l iqu id  nitrogen has been transported flom 

Atlanta t o  Pasadena, Unique faci l i t ies  and expertise at Caltech, combined 

with long experience i n  cryochemistry at Georgia Tech, permit broader and 

more def in i t ive  studies than would be possible at e i the r  I n s t i t u t e  alone. We 

ant ic ipate  and are  working toward long-term collaborative research programs. 

Other campus functions of t h e  Principal Investigator include service on 

a Board responsible fo r  t he  administration of  a large ($300,00O/year) NASA 
Sustaining University Grant and on a s m a l l  committee appointed by the  Chancellor 

of t he  University System of Georgia t o  advise him i n  the  selection of a new 

President f o r  Georgia Tech. 

of the  67th National Meeting of the American I n s t i t u t e  of Chemical Engineers 

t o  be held i n  Atlanta i n  February 1970. 
f o r  the  en t i r e  technical program of t h i s  national I n s t i t u t e  meeting. 

D r .  McGee has been named Meeting Program Chairman 

In  t h i s  posit ion he i s  responsible 
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